首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  国内免费   19篇
安全科学   14篇
综合类   45篇
基础理论   6篇
污染及防治   8篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   7篇
  2006年   1篇
  2005年   3篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
采用聚氨酯泡沫-被动采样法(PUF-PAS)采集鸭儿湖地区大气样,研究典型污染源地区大气中有机氯农药(OCPs)组成、来源及土-气交换现状。鸭儿湖地区大气中OCPs主要组成为艾氏剂(Aldrin)、滴滴涕(DDTs)、六六六(HCHs)、六氯苯(HCB)、甲氧滴滴涕(Methoxychlor)和a-硫丹(α-Endosulfan),约占OCPs总量的84%。较高浓度Aldrin(平均浓度为161.25 pg/m3)广泛存在应引起高度重视。HCHs(平均浓度为89.64 pg/m3)和DDTs(平均浓度为92.29 pg/m3)普遍存在且含量高,污染程度比较明显。HCHs异构体中β-HCH高于α-HCH,远远高于γ-HCH和δ-HCH,说明HCHs经过长期降解已逐渐稳定下来;来源分析推测存在工业HCHs的使用或者受大气长距离传输影响。DDTs在各点位分布明显不同于HCHs,且各点位DDTs的六种组成均存在很大差别,可能由于点位地理位置以及农药使用情况导致;来源分析推测大气中DDTs主要来自历史残留。鸭儿湖地区OCPs土气交换研究表明,HCHs主要表现为从大气向土壤中沉降;DDTs在大多数点位源于土壤中历史残留的挥发,部分点位受到大气长距离传输影响。  相似文献   
2.
固定化微生物技术在印染废水处理方面的研究进展   总被引:1,自引:0,他引:1  
从固定化方法、固定化载体以及固定化微生物的选择等方面全面系统地介绍了固定化微生物技术处理印染废水的研究进展及应用现状,并展望了固定化微生物技术应用前景。  相似文献   
3.
大冶湖表层水和沉积物中重金属污染特征与风险评价   总被引:15,自引:11,他引:4  
于2014年4月采集大冶湖表层水和表层沉积物,用原子吸收分光光度法测定其重金属含量,并基于健康风险评价模型和潜在生态风险指数法开展表层水和沉积物重金属污染的潜在健康风险和生态风险评价.结果表明,表层水和沉积物重金属(Ni、Cd、Cu和Pb)含量平均值分别为49.27、2.19、12.18、12.13μg·L~(-1)和78.46、77.13、650.13、134.22 mg·kg~(-1).富集系数显示,Cd、Cu和Pb均为重度富集,尤其是Cd累积最为明显.与国内典型湖泊重金属污染相比,表层水和沉积物中重金属元素含量均相对较高.表层水和沉积物重金属元素均表现为湖湾处含量较高,中部含量较均匀的分布规律,其来源主要受多种人为活动污染.环境风险评价显示,重金属类化学物质通过饮水途径产生健康风险范围为9.77E-08~1.63E-05 a-1,Ni和Cd是水环境健康风险的优先管理对象.沉积物重金属的潜在生态风险高低为CdCuPbNi,其中Cd是生态风险的贡献元素.  相似文献   
4.
改良剂对Cd污染土壤中小白菜品质的影响   总被引:1,自引:0,他引:1  
通过小白菜盆栽试验,以啤酒污泥、草木灰及其混合物作为土壤改良剂,以生物量、可溶性糖、维生素C和叶绿素含量为指标,研究了改良剂对小白菜品质的影响,并分析了土壤中Cd赋存形态的变化。结果表明,不同改良剂在性质和改良机制上存在差异,因此改良效果各不相同,其中啤酒污泥和草木灰的混合物的改良效果最好,其次是啤酒污泥,最后是草木灰。虽然3种改良剂均能降低小白菜茎叶中Cd含量和土壤中有效态(水溶态和可交换态)Cd含量,提高小白菜品质,但小白菜茎叶中Cd含量仍超过《食品中污染物限量》(GB 2762—2005)规定的蔬菜中Cd限量值。  相似文献   
5.
混凝-气浮-加压曝气工艺处理屠宰废水   总被引:1,自引:0,他引:1  
高浓度生猪屠宰废水属难治理工业废水.采用混凝-气浮-加压曝气工艺处理屠宰废水,经生产实践证明,出水水质可达到<肉类加工工业水污染物排放标准>(GB13457-92)中的一级标准.  相似文献   
6.
提出运用高压变频技术实现电弧炉除尘风机变频调速的工艺.在70 t ABB电弧炉烟气治理运用中,以温度为调速系统主要控制参数,设计工频和变频两套系统,实现除尘风机的转速按工艺要求调节,其功率因数从0.83提高到0.97,除尘系统节电60%,冶炼工况同时也得到改善.表明该工艺具有广阔的应用前景.  相似文献   
7.
以湖北大冶湖和磁湖为研究对象,分析了矿区湖泊表层水和微型浮游生物中Cu、Pb、Cd、Zn、Cr、Fe 6种重金属的含量,并对矿区湖泊表层水重金属污染和微型浮游生物对重金属的富集能力进行了评价.结果表明:大冶湖表层水中重金属Cu、Pb、Cd、Zn、Cr和Fe的平均浓度分别为0.009 1 mg/L、0.013 4 mg/L、0.009 2 mg/L、0.043 4 mg/L、0.057 8 mg/L、0.338 2 mg/L,磁湖表层水中重金属Cu、Pb、Cd、Zn、Cr和Fe的平均浓度分别为0.004 3 mg/L、0.012 7 mg/L、0.001 1 mg/L、0.389 2 mg/L、0.063 4 mg/L、0.7110mg/L;大冶湖微型浮游生物中重金属Cu、Pb、Cd、Zn、Cr和Fe的平均浓度分别为278.6 mg/kg干重、695.6 mg/kg干重、23.1 mg/kg干重、578.0mg/kg干重、323.5 mg/kg干重、142 14 mg/kg干重,磁湖微型浮游生物中重金属Cu、Pb、Cd、Zn、Cr和Fe的平均浓度分别为316.1 mg/kg干重、361.4 mg/kg干重、2.06 mg/kg干重、1 004.5 mg/kg干重、313.3 mg/kg干重、18 366 mg/kg干重;大冶湖和磁湖微型浮游生物中的重金属含量远高于表层水中的重金属含量,甚至高于表层沉积物中的重金属含量;矿区湖泊微型浮游生物对重金属的富集系数在1 800~82 600之间,其中微型浮游生物对Cd、Zn、Cr的富集系数较小,对Cu、Pb、Fe的富集系数较大.  相似文献   
8.
柠檬酸废水达标治理和循环利用的研究   总被引:1,自引:0,他引:1  
分析了柠檬酸生产废水来源及特点.根据柠檬酸废水的特点,研究了达标治理废水的工艺条件,并对厌氧反应器进行了综合比较,提出了废水循环利用的各种途径.  相似文献   
9.
于2012年4月沿大九湖湿地平均分布10个采样点,各采集0~10、10~20以及20~30 cm浅层土壤,采用GC-MS对大九湖湿地浅层土壤中USEPA 16种优控多环芳烃(PAHs)进行分析,对其分布、组成、来源进行了详细的讨论,并对高山湿地PAHs污染标志物进行了浅析.结果表明,研究区0~10、10~20、20~30cm浅层土壤中∑16PAHs含量分别为48.55~984.73、14.36~806.47、12.84~1191.53 ng·g-1,均值分别为302.94、142.98、208.68 ng·g-1;7种致癌单体多环芳烃含量范围分别为21.20~844.29、2.96~592.06、0.66~964.70 ng·g-1,均值分别为197.25、93.16、147.16 ng·g-1,分别占总PAHs的65.12%、65.13%、69.08%;泥炭区PAHs含量明显高于非泥炭区,且已达到重度污染程度;PAHs组成以4、5、6环为主;结合IcdP/(IcdP+BghiP)及Pyr/BaP比值分析,推测大九湖湿地浅层土壤中PAHs主要来源于化石燃料及木材的燃烧,近年来旅游车辆的进入对PAHs的贡献较大;对浅层土壤中各单体PAH与PAHs总含量进行回归分析表明、苯并(b)荧蒽、茚(1,2,3cd)并芘、苯并(a)蒽作为泥炭地PAHs标志性化合物,用来评价PAHs的污染程度.  相似文献   
10.
某石油化工园区秋季VOCs污染特征及来源解析   总被引:6,自引:4,他引:2  
利用快速连续在线自动监测系统对某典型石油化工园区2014年秋季(9、10、11月)大气中VOCs进行监测,并对其组成、光化学反应活性、时间变化特征和来源进行解析.结果表明:秋季大气中VOCs的混合体积分数明显高于国内外其他城市和工业地区,且烷烃是大气中VOCs的最主要成分.研究区秋季3个月份大气中VOCs的混合体积分数之间差异不显著,但各种烃类的日夜变化特征明显:烷烃、烯烃和芳香烃呈现"单峰单谷"变化趋势,乙炔的变化趋势呈"W"型.PMF受体模型解析结果表明主要来源于天然气交通及溶剂、炼油厂的泄漏或挥发等过程,其次为其他交通来源,沥青对于研究区VOCs来源也有一定的贡献.等效丙烯体积和最大臭氧生成潜势对VOCs的光化学反应活性计算结果表明,烯烃和烷烃分别是各自混合体积分数的最主要的贡献者.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号